3.1767 \(\int \frac{(a+b x) (e+f x)^{3/2}}{c+d x} \, dx\)

Optimal. Leaf size=130 \[ -\frac{2 (e+f x)^{3/2} (b c-a d)}{3 d^2}-\frac{2 \sqrt{e+f x} (b c-a d) (d e-c f)}{d^3}+\frac{2 (b c-a d) (d e-c f)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{e+f x}}{\sqrt{d e-c f}}\right )}{d^{7/2}}+\frac{2 b (e+f x)^{5/2}}{5 d f} \]

[Out]

(-2*(b*c - a*d)*(d*e - c*f)*Sqrt[e + f*x])/d^3 - (2*(b*c - a*d)*(e + f*x)^(3/2))/(3*d^2) + (2*b*(e + f*x)^(5/2
))/(5*d*f) + (2*(b*c - a*d)*(d*e - c*f)^(3/2)*ArcTanh[(Sqrt[d]*Sqrt[e + f*x])/Sqrt[d*e - c*f]])/d^(7/2)

________________________________________________________________________________________

Rubi [A]  time = 0.107757, antiderivative size = 130, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {80, 50, 63, 208} \[ -\frac{2 (e+f x)^{3/2} (b c-a d)}{3 d^2}-\frac{2 \sqrt{e+f x} (b c-a d) (d e-c f)}{d^3}+\frac{2 (b c-a d) (d e-c f)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{e+f x}}{\sqrt{d e-c f}}\right )}{d^{7/2}}+\frac{2 b (e+f x)^{5/2}}{5 d f} \]

Antiderivative was successfully verified.

[In]

Int[((a + b*x)*(e + f*x)^(3/2))/(c + d*x),x]

[Out]

(-2*(b*c - a*d)*(d*e - c*f)*Sqrt[e + f*x])/d^3 - (2*(b*c - a*d)*(e + f*x)^(3/2))/(3*d^2) + (2*b*(e + f*x)^(5/2
))/(5*d*f) + (2*(b*c - a*d)*(d*e - c*f)^(3/2)*ArcTanh[(Sqrt[d]*Sqrt[e + f*x])/Sqrt[d*e - c*f]])/d^(7/2)

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{(a+b x) (e+f x)^{3/2}}{c+d x} \, dx &=\frac{2 b (e+f x)^{5/2}}{5 d f}+\frac{\left (2 \left (-\frac{5}{2} b c f+\frac{5 a d f}{2}\right )\right ) \int \frac{(e+f x)^{3/2}}{c+d x} \, dx}{5 d f}\\ &=-\frac{2 (b c-a d) (e+f x)^{3/2}}{3 d^2}+\frac{2 b (e+f x)^{5/2}}{5 d f}-\frac{((b c-a d) (d e-c f)) \int \frac{\sqrt{e+f x}}{c+d x} \, dx}{d^2}\\ &=-\frac{2 (b c-a d) (d e-c f) \sqrt{e+f x}}{d^3}-\frac{2 (b c-a d) (e+f x)^{3/2}}{3 d^2}+\frac{2 b (e+f x)^{5/2}}{5 d f}-\frac{\left ((b c-a d) (d e-c f)^2\right ) \int \frac{1}{(c+d x) \sqrt{e+f x}} \, dx}{d^3}\\ &=-\frac{2 (b c-a d) (d e-c f) \sqrt{e+f x}}{d^3}-\frac{2 (b c-a d) (e+f x)^{3/2}}{3 d^2}+\frac{2 b (e+f x)^{5/2}}{5 d f}-\frac{\left (2 (b c-a d) (d e-c f)^2\right ) \operatorname{Subst}\left (\int \frac{1}{c-\frac{d e}{f}+\frac{d x^2}{f}} \, dx,x,\sqrt{e+f x}\right )}{d^3 f}\\ &=-\frac{2 (b c-a d) (d e-c f) \sqrt{e+f x}}{d^3}-\frac{2 (b c-a d) (e+f x)^{3/2}}{3 d^2}+\frac{2 b (e+f x)^{5/2}}{5 d f}+\frac{2 (b c-a d) (d e-c f)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{e+f x}}{\sqrt{d e-c f}}\right )}{d^{7/2}}\\ \end{align*}

Mathematica [A]  time = 0.150638, size = 112, normalized size = 0.86 \[ \frac{2 \left (\frac{5 (a d f-b c f) \left (\sqrt{d} \sqrt{e+f x} (-3 c f+4 d e+d f x)-3 (d e-c f)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{e+f x}}{\sqrt{d e-c f}}\right )\right )}{3 d^{5/2}}+b (e+f x)^{5/2}\right )}{5 d f} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + b*x)*(e + f*x)^(3/2))/(c + d*x),x]

[Out]

(2*(b*(e + f*x)^(5/2) + (5*(-(b*c*f) + a*d*f)*(Sqrt[d]*Sqrt[e + f*x]*(4*d*e - 3*c*f + d*f*x) - 3*(d*e - c*f)^(
3/2)*ArcTanh[(Sqrt[d]*Sqrt[e + f*x])/Sqrt[d*e - c*f]]))/(3*d^(5/2))))/(5*d*f)

________________________________________________________________________________________

Maple [B]  time = 0.008, size = 370, normalized size = 2.9 \begin{align*}{\frac{2\,b}{5\,df} \left ( fx+e \right ) ^{{\frac{5}{2}}}}+{\frac{2\,a}{3\,d} \left ( fx+e \right ) ^{{\frac{3}{2}}}}-{\frac{2\,bc}{3\,{d}^{2}} \left ( fx+e \right ) ^{{\frac{3}{2}}}}-2\,{\frac{acf\sqrt{fx+e}}{{d}^{2}}}+2\,{\frac{ae\sqrt{fx+e}}{d}}+2\,{\frac{b{c}^{2}f\sqrt{fx+e}}{{d}^{3}}}-2\,{\frac{bce\sqrt{fx+e}}{{d}^{2}}}+2\,{\frac{a{c}^{2}{f}^{2}}{{d}^{2}\sqrt{ \left ( cf-de \right ) d}}\arctan \left ({\frac{\sqrt{fx+e}d}{\sqrt{ \left ( cf-de \right ) d}}} \right ) }-4\,{\frac{acfe}{d\sqrt{ \left ( cf-de \right ) d}}\arctan \left ({\frac{\sqrt{fx+e}d}{\sqrt{ \left ( cf-de \right ) d}}} \right ) }+2\,{\frac{a{e}^{2}}{\sqrt{ \left ( cf-de \right ) d}}\arctan \left ({\frac{\sqrt{fx+e}d}{\sqrt{ \left ( cf-de \right ) d}}} \right ) }-2\,{\frac{b{c}^{3}{f}^{2}}{{d}^{3}\sqrt{ \left ( cf-de \right ) d}}\arctan \left ({\frac{\sqrt{fx+e}d}{\sqrt{ \left ( cf-de \right ) d}}} \right ) }+4\,{\frac{b{c}^{2}fe}{{d}^{2}\sqrt{ \left ( cf-de \right ) d}}\arctan \left ({\frac{\sqrt{fx+e}d}{\sqrt{ \left ( cf-de \right ) d}}} \right ) }-2\,{\frac{bc{e}^{2}}{d\sqrt{ \left ( cf-de \right ) d}}\arctan \left ({\frac{\sqrt{fx+e}d}{\sqrt{ \left ( cf-de \right ) d}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)*(f*x+e)^(3/2)/(d*x+c),x)

[Out]

2/5*b*(f*x+e)^(5/2)/d/f+2/3/d*(f*x+e)^(3/2)*a-2/3/d^2*(f*x+e)^(3/2)*b*c-2*f/d^2*a*c*(f*x+e)^(1/2)+2/d*a*e*(f*x
+e)^(1/2)+2*f/d^3*b*c^2*(f*x+e)^(1/2)-2/d^2*b*c*e*(f*x+e)^(1/2)+2*f^2/d^2/((c*f-d*e)*d)^(1/2)*arctan((f*x+e)^(
1/2)*d/((c*f-d*e)*d)^(1/2))*a*c^2-4*f/d/((c*f-d*e)*d)^(1/2)*arctan((f*x+e)^(1/2)*d/((c*f-d*e)*d)^(1/2))*a*c*e+
2/((c*f-d*e)*d)^(1/2)*arctan((f*x+e)^(1/2)*d/((c*f-d*e)*d)^(1/2))*a*e^2-2*f^2/d^3/((c*f-d*e)*d)^(1/2)*arctan((
f*x+e)^(1/2)*d/((c*f-d*e)*d)^(1/2))*b*c^3+4*f/d^2/((c*f-d*e)*d)^(1/2)*arctan((f*x+e)^(1/2)*d/((c*f-d*e)*d)^(1/
2))*b*c^2*e-2/d/((c*f-d*e)*d)^(1/2)*arctan((f*x+e)^(1/2)*d/((c*f-d*e)*d)^(1/2))*b*c*e^2

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(f*x+e)^(3/2)/(d*x+c),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.38147, size = 795, normalized size = 6.12 \begin{align*} \left [-\frac{15 \,{\left ({\left (b c d - a d^{2}\right )} e f -{\left (b c^{2} - a c d\right )} f^{2}\right )} \sqrt{\frac{d e - c f}{d}} \log \left (\frac{d f x + 2 \, d e - c f - 2 \, \sqrt{f x + e} d \sqrt{\frac{d e - c f}{d}}}{d x + c}\right ) - 2 \,{\left (3 \, b d^{2} f^{2} x^{2} + 3 \, b d^{2} e^{2} - 20 \,{\left (b c d - a d^{2}\right )} e f + 15 \,{\left (b c^{2} - a c d\right )} f^{2} +{\left (6 \, b d^{2} e f - 5 \,{\left (b c d - a d^{2}\right )} f^{2}\right )} x\right )} \sqrt{f x + e}}{15 \, d^{3} f}, \frac{2 \,{\left (15 \,{\left ({\left (b c d - a d^{2}\right )} e f -{\left (b c^{2} - a c d\right )} f^{2}\right )} \sqrt{-\frac{d e - c f}{d}} \arctan \left (-\frac{\sqrt{f x + e} d \sqrt{-\frac{d e - c f}{d}}}{d e - c f}\right ) +{\left (3 \, b d^{2} f^{2} x^{2} + 3 \, b d^{2} e^{2} - 20 \,{\left (b c d - a d^{2}\right )} e f + 15 \,{\left (b c^{2} - a c d\right )} f^{2} +{\left (6 \, b d^{2} e f - 5 \,{\left (b c d - a d^{2}\right )} f^{2}\right )} x\right )} \sqrt{f x + e}\right )}}{15 \, d^{3} f}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(f*x+e)^(3/2)/(d*x+c),x, algorithm="fricas")

[Out]

[-1/15*(15*((b*c*d - a*d^2)*e*f - (b*c^2 - a*c*d)*f^2)*sqrt((d*e - c*f)/d)*log((d*f*x + 2*d*e - c*f - 2*sqrt(f
*x + e)*d*sqrt((d*e - c*f)/d))/(d*x + c)) - 2*(3*b*d^2*f^2*x^2 + 3*b*d^2*e^2 - 20*(b*c*d - a*d^2)*e*f + 15*(b*
c^2 - a*c*d)*f^2 + (6*b*d^2*e*f - 5*(b*c*d - a*d^2)*f^2)*x)*sqrt(f*x + e))/(d^3*f), 2/15*(15*((b*c*d - a*d^2)*
e*f - (b*c^2 - a*c*d)*f^2)*sqrt(-(d*e - c*f)/d)*arctan(-sqrt(f*x + e)*d*sqrt(-(d*e - c*f)/d)/(d*e - c*f)) + (3
*b*d^2*f^2*x^2 + 3*b*d^2*e^2 - 20*(b*c*d - a*d^2)*e*f + 15*(b*c^2 - a*c*d)*f^2 + (6*b*d^2*e*f - 5*(b*c*d - a*d
^2)*f^2)*x)*sqrt(f*x + e))/(d^3*f)]

________________________________________________________________________________________

Sympy [A]  time = 29.2673, size = 139, normalized size = 1.07 \begin{align*} \frac{2 b \left (e + f x\right )^{\frac{5}{2}}}{5 d f} + \frac{\left (e + f x\right )^{\frac{3}{2}} \left (2 a d - 2 b c\right )}{3 d^{2}} + \frac{\sqrt{e + f x} \left (- 2 a c d f + 2 a d^{2} e + 2 b c^{2} f - 2 b c d e\right )}{d^{3}} + \frac{2 \left (a d - b c\right ) \left (c f - d e\right )^{2} \operatorname{atan}{\left (\frac{\sqrt{e + f x}}{\sqrt{\frac{c f - d e}{d}}} \right )}}{d^{4} \sqrt{\frac{c f - d e}{d}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(f*x+e)**(3/2)/(d*x+c),x)

[Out]

2*b*(e + f*x)**(5/2)/(5*d*f) + (e + f*x)**(3/2)*(2*a*d - 2*b*c)/(3*d**2) + sqrt(e + f*x)*(-2*a*c*d*f + 2*a*d**
2*e + 2*b*c**2*f - 2*b*c*d*e)/d**3 + 2*(a*d - b*c)*(c*f - d*e)**2*atan(sqrt(e + f*x)/sqrt((c*f - d*e)/d))/(d**
4*sqrt((c*f - d*e)/d))

________________________________________________________________________________________

Giac [B]  time = 1.98881, size = 321, normalized size = 2.47 \begin{align*} -\frac{2 \,{\left (b c^{3} f^{2} - a c^{2} d f^{2} - 2 \, b c^{2} d f e + 2 \, a c d^{2} f e + b c d^{2} e^{2} - a d^{3} e^{2}\right )} \arctan \left (\frac{\sqrt{f x + e} d}{\sqrt{c d f - d^{2} e}}\right )}{\sqrt{c d f - d^{2} e} d^{3}} + \frac{2 \,{\left (3 \,{\left (f x + e\right )}^{\frac{5}{2}} b d^{4} f^{4} - 5 \,{\left (f x + e\right )}^{\frac{3}{2}} b c d^{3} f^{5} + 5 \,{\left (f x + e\right )}^{\frac{3}{2}} a d^{4} f^{5} + 15 \, \sqrt{f x + e} b c^{2} d^{2} f^{6} - 15 \, \sqrt{f x + e} a c d^{3} f^{6} - 15 \, \sqrt{f x + e} b c d^{3} f^{5} e + 15 \, \sqrt{f x + e} a d^{4} f^{5} e\right )}}{15 \, d^{5} f^{5}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(f*x+e)^(3/2)/(d*x+c),x, algorithm="giac")

[Out]

-2*(b*c^3*f^2 - a*c^2*d*f^2 - 2*b*c^2*d*f*e + 2*a*c*d^2*f*e + b*c*d^2*e^2 - a*d^3*e^2)*arctan(sqrt(f*x + e)*d/
sqrt(c*d*f - d^2*e))/(sqrt(c*d*f - d^2*e)*d^3) + 2/15*(3*(f*x + e)^(5/2)*b*d^4*f^4 - 5*(f*x + e)^(3/2)*b*c*d^3
*f^5 + 5*(f*x + e)^(3/2)*a*d^4*f^5 + 15*sqrt(f*x + e)*b*c^2*d^2*f^6 - 15*sqrt(f*x + e)*a*c*d^3*f^6 - 15*sqrt(f
*x + e)*b*c*d^3*f^5*e + 15*sqrt(f*x + e)*a*d^4*f^5*e)/(d^5*f^5)